COMMENTS ON "A NOTE ON A FINITE ELEMENT FOR VIBRATING THIN, ORTHOTROPIC RECTANGULAR PLATES"

Serge Abrate
Department of Technology, Southern Illinois University, Carbondale, IL 62901-6603, U.S.A

(Received 26 January 1998)

Rossi [1] used a classical finite element formulation to analyse the free vibrations of rectangular orthotropic plates. In order to show the accuracy of the finite element model, three examples are presented: (1) a simply-supported square isotropic plate, (2) a simply-supported square orthotropic plate; and (3) a clamped square orthotropic plate. The accuracy of the results is established by comparison with the results from the exact closed-form solution for simply supported plates and by comparison with results from previous investigators for the clamped plate example. Convergence of the finite element solution was demonstrated by giving the first four natural frequencies for 8 , increasingly refined, uniform meshes. This discussion will address the convergence of the finite element solution and point out two typographical errors in the numerical results given in reference [1].
Strang and Fix [2] studied the eigenvalue and eigenfunction errors in finite element approximations. They proved the following convergence theorem: If S^{k} is a finite element space of degree $k-1$, then there is a constant δ such that the approximate eigenvalues are bounded for small h by

$$
\begin{equation*}
\lambda_{i} \leqslant \lambda_{i}^{h} \leqslant \lambda_{i}+2 \delta h^{2(k-m)} \lambda^{k \mid m_{i}}, \tag{1}
\end{equation*}
$$

where $\lambda_{i}=\omega_{i}^{2}$ is the exact eigenvalue, $\lambda_{i}^{h}=\left(\omega_{i}^{h}\right)^{2}$ is the finite element approximation for a uniform mesh with element size h, and m is the highest degree of the derivatives in the strain energy density functional. Let us define the error for the i th eigenvalue as

$$
\begin{equation*}
E_{i}=\frac{\lambda_{i}^{h}}{\lambda_{i}}-1 \tag{2}
\end{equation*}
$$

For the bi-cubic element used in reference [1], $k=4$ and $m=2$. Therefore, inequalities (1) imply that the error E_{i} is proportional to h^{4} or, in other words, that E_{i} is inversely proportional to the square of the number of elements. Plotting the error E_{i} vs the number of elements using a logarithmic scale for both axes should result in a series of straight lines with a slope of -2 . The convergence theorem also indicates that the error increases with λ_{i}.
For each example, reference [1] gives results obtained using $25,100,225,400$, and 625 element meshes for the entire plate but also $225,400,625$ element meshes for a quarter of the plate. Because of symmetry, these last three models are equivalent to using 900, 1600, and 2500 elements for the entire plate. Figures 1-3 show that for all three examples, the error for each eigenvalue is inversely proportional to the square of the number of elements
in the model. The hypotenuse of the triangles drawn in dotted lines in these figures has a slope equal to -2 to emphasize that point.

Deviations from perfectly straight lines on these plots are attributed to the fact that the results given in Tables 1-3 of reference [1] do not always carry enough significant figures to calculate the error accurately. It can be shown that, if the error E is to be known within $\pm \varepsilon$, the natural frequency must be known within $\pm \alpha$, where

$$
\begin{equation*}
\alpha=\frac{1}{2} \omega E \varepsilon . \tag{3}
\end{equation*}
$$

For example, for the first mode of the clamped square orthotropic plate predicted a 625 element mesh, reference [1] gives a non-dimensional frequency of 29.9792 in Table 3. In that case, to have the error estimated within $\pm 1 \%$ requires that the frequency be known within $\pm 3.3 \times 10^{-6}$. Therefore, the frequency should be given with six decimal places instead of four. Discrepancies observed in Figures 1-3 are attributable to the fact that not enough significant figures were available to calculate the error.

Displacement-based finite element approximations overestimate the natural frequencies and converge uniformly to the exact solution from above as indicated by the convergence

Figure 1. Error in eigenvalues as a function of the number of elements for the simply supported, square, isotropic plate in reference [1].

Figure 2. Error in eigenvalues as a function of the number of elements for the simply supported, square, orthotropic plate in reference [1].
theorem. In reference [1], the second non-dimensional frequency for the square isotropic plate is predicted to be $49 \cdot 3514,49 \cdot 3587$, and $49 \cdot 3482$ for uniform meshes with 100,225 , and 400 elements respectively. The value of 49.3587 is greatly in error and is inconsistent, since the frequency for that mesh is expected be less than 49.3514 . This data point was omitted in Figure 1 but, from the general trend of the error for that frequency, we suspect that the actual finite element must have been $49 \cdot 3487$. The exact solution for the first natural frequency for the simply supported orthotropic plate given in Table 2 of reference [1] should be $15 \cdot 6052147$ instead of $16 \cdot 605214$.
The purpose of that discussion was to examine the convergence rate of the eigenvalues for the finite element approximation using the element developed in reference [1]. With the error defined as in equation (2), the error is inversely proportional to the square of the number of elements. The author is to be congratulated for the quality of his work and for providing extensive numerical results that have made these observations possible.

Figure 3. Error in eigenvalues as a function of the number of elements for the clamped, square, orthotropic plate in reference [1].

REFERENCES

1. R. E. Rossi 1997 Journal of Sound and Vibration 208(5), 864-865. A note on a finite element for vibrating thin, orthotropic rectangular plates.
2. G. Strang and G. J. Fix 1973 An Analysis of the Finite Element Method. Englewood Cliffs, NJ: Prentice-Hall; 230.

AUTHOR'S REPLY

R. E. Rossi

Department of Engineering, Universidad Nacional del Sur, 8000 Bahía Blanca, Argentina
(Received 14 April 1998)
The author is indebted to Professor Serge Abrate for his valuable comments and constructive criticism [1] which have enhanced considerably the value of his contribution.

At the same time the author apologizes for two typographical errors in Tables 1 and 2 pointed out by Professor Abrate and another one in Table 3.

Table 1
The frequency coefficients of a simply supported, square, isotropic plate

Number of elements	Ω_{1}	$\Omega_{2}=\Omega_{3}$	Ω_{4}	$\Omega_{5}=\Omega_{6}$
25	19.7402843	$49 \cdot 4014425$	79.0264868	99.3402231
100	19.7392757	$49 \cdot 3514311$	78.9611372	98.7389575
225	19.7392220	49.3486979	78.9576819	98.7046187
400	19.7392130	$49 \cdot 3482361$	78.9571028	98.6987680
625	19.7392105	$49 \cdot 3481098$	78.9569447	98.6971618
$225 *$	19.7392096	$49 \cdot 3480643$	78.9568880	98.6965836
400*	19.7392091	$49 \cdot 3480354$	78.9568519	98.6962149
625*	19.7392089	$49 \cdot 3480275$	78.9568420	98.6961140
Exact solution	19.7392088	$49 \cdot 3480220$	78.9568352	98.6960440

* Results obtained using one-quarter of the plate.

Table 2
The frequency coefficients of a simply supported, square, orthotropic plate ($D_{2} / D_{1}=0 \cdot 5$;

$$
\left.D_{3} / D_{1}=0 \cdot 5 ; v_{2}=0 \cdot 3\right)
$$

Number of elements	Ω_{1}	Ω_{2}	Ω_{3}	Ω_{4}
25	15.6062290	$35 \cdot 6225523$	44.7449250	$62 \cdot 4856077$
100	15.6052781	35.5877378	44.6902833	62.4249160
225	15.6052273	35.5858352	44.6872787	$62 \cdot 4216601$
400	15.6052187	35.5855138	44.6867704	$62 \cdot 4211124$
625	15.6052164	35.5854258	44.6866312	$62 \cdot 4209628$
225*	15.6052155	35.5853942	44.6865812	$62 \cdot 4209091$
400*	15.6052150	35.5853741	44.6865493	$62 \cdot 4208750$
625*	15.6052148	35.5853686	44.6865406	$62 \cdot 4208655$
Exact solution	$15 \cdot 6052147$	35.5853647	44.6865345	$62 \cdot 4208590$

* Results obtained using one-quarter of the plate.

Table 3
The frequency coefficients of a clamped, square, orthotropic plate $\left(D_{2} / D_{1}=0 \cdot 5 ; D_{3} / D_{1}=0 \cdot 5\right.$; $v_{2}=0 \cdot 3$)

Number of elements	Ω_{1}	Ω_{2}	Ω_{3}	Ω_{4}
25	$30 \cdot 0006322$	54.5135497	68.0546078	88.5513045
100	29.9806946	54.3484336	67.8147929	88.1860084
225	29.9794826	54.3390446	$67 \cdot 8011100$	$88 \cdot 1646577$
400	29.9792685	54.3374237	67.7987567	$88 \cdot 1608931$
625	29.9792086	54.3369750	67.7981068	$88 \cdot 1598383$
225*	29.9791869	54.3368127	67.7978719	$88 \cdot 1594539$
400*	29.9791729	54.3367088	67.7977217	88.1592064
625*	29.9791691	54.3366803	67.7976805	88.1591382
Reference [2]	29.979167	54.336663	$67 \cdot 797655$	$88 \cdot 159097$

[^0]Table 1: The third value of the column $\Omega_{2}=\Omega_{3}$ should be $49 \cdot 3487$ (instead of $49 \cdot 3587$).
Table 2: The last value of the column corresponding to Ω_{1} is $15 \cdot 6052147$ (instead of 16.6052147).

Table 3: The second value of the column corresponding to Ω_{1} is 29.9807 (instead of 29.9797).

Also the author is providing again Tables 1, 2 and 3 with additional significant figures (seven decimal places) in order that the error analysis suggested by Professor Abrate may be performed, if so desired.

REFERENCES

1. S. Abrate 1998 Journal of Sound and Vibration 216, 315-318. Comments on "A note on a finite element for vibrating thin, orthotropic rectangular plates".
2. T. Sakata and K. Hosokawa 1988 Journal of Sound and Vibration 125, 429-439. Vibrations of clamped orthotropic rectangular plates.

[^0]: * Results obtained using one-quarter of the plate.

